
DEDAUB.COM

OneRing Audit

Smart Contract Security Assessment

July 21, 2022

DEDAUB.COM

ABSTRACT

Dedaub was commissioned to perform a security audit of the OneRing protocol.

This covered OneRing’s contracts at commit hash:
59a7a11f9048d3c78410a3e0d30fa782a017df03 of the master branch.

The audited contract list is the following:

● contracts/MasterChefStrategy.sol
● contracts/facets/ManagementFacet.sol
● contracts/facets/PublicInfoFacet.sol
● contracts/facets/VaultFacet.sol
● contracts/facets/OwnershipFacet.sol
● contracts/libraries/LibManagement.sol
● contracts/libraries/LibVault.sol
● contracts/libraries/LibUtils.sol
● contracts/libraries/LibStorage.sol
● contracts/libraries/LibRequirements.sol
● contracts/libraries/LibMasterChefUtils.sol

Two auditors worked on the codebase for a week.

As a result of the audit, the OneRingTeam �xed a number of issues. These �xes were also
reviewed by the auditors. These are located at commit hash:
a68171dac9b300f4f9f91e3eb10f5a5abb69be8a

Se�ing and Caveats

The audit’s main target is security threats, i.e., what the community understanding
would likely call "hacking", rather than regular use of the protocol. Functional

1

https://github.com/0xRobocop/DiamondV2

DEDAUB.COM

correctness (i.e., issues in "regular use") is a secondary consideration. Typically it can
only be covered if we are provided with unambiguous (i.e., full-detail) speci�cations of
what is the expected, correct behavior. In terms of functional correctness, we often
trusted the code’s calculations and interactions, in the absence of any other
speci�cation. Functional correctness relative to low-level calculations (including units,
scaling, quantities returned from external protocols) is generally most e�ectively done
through thorough testing rather than human auditing. The scope of the audit includes
smart contract code. Interactions with o�-chain (front-end or back-end) code are not
examined other than to consider entry points for the contracts, i.e., calls into a smart
contract that may disrupt the contract’s functioning.

We should emphasize that, independently of any audit, thoroughly testing all contracts
is essential for discovering functional bugs that often also lead to security vulnerabilities.
We believe that a large number of the issues listed below could have been discovered by
a comprehensive test suite.

VULNERABILITIES & FUNCTIONAL ISSUES
This section details issues that a�ect the functionality of the contract. Dedaub generally
categorizes issues according to the following severities, but may also take other
considerations into account such as impact or di�iculty in exploitation:

Category Description

CRITICAL Can be pro�tably exploited by any knowledgeable third party a�acker
to drain a portion of the system’s or users’ funds OR the contract does
not function as intended and severe loss of funds may result.

HIGH Third party a�ackers or faulty functionality may block the system or
cause the system or users to lose funds. Important system invariants
can be violated.

2

DEDAUB.COM

MEDIUM Examples:
-User or system funds can be lost when third party systems misbehave.
-DoS, under speci�c conditions.
-Part of the functionality becomes unusable due to programming error.

LOW Examples:
-Breaking important system invariants, but without apparent
consequences.
-Buggy functionality for trusted users where a workaround exists.
-Security issues which may manifest when the system evolves.

Issue resolution includes “dismissed”, by the client, or “resolved”, per the auditors.

CRITICAL SEVERITY:

No critical severity issues were found.

HIGH SEVERITY:

ID Description STATUS

H1 In LibVault, the _withdraw function can return without
transferring the funds to the caller.

RESOLVED

In LibVault, the _withdraw() function can terminate prematurely under certain
conditions without performing the transfer of funds to the caller.

This occurs because the contract returns when it contains enough USDC to satisfy the
withdrawal request. This is possible if the contract has accumulated fees in USDC

3

DEDAUB.COM

during previous withdrawal requests, or if the contract has accumulated additional
USDC as a result of it fetching an extra 0.5% from the strategies during previous
withdrawal requests.

function _withdraw(address owner, uint256 oneUSDAmount) internal

returns(uint256) {

// Ideally the contract will give USDC 1:1 with the 1USD burned

uint256 usdcToWithdraw =

LibUtils._convertFromDecimalsToDecimals(oneUSDAmount,

LibStorage.ONE_USD_DECIMALS, LibStorage.USDC_DECIMALS);

uint256 contractBalance =

LibUtils._balanceOfERC20(LibStorage.USDC_CONTRACT, address(this));

if(contractBalance >= usdcToWithdraw) {

return usdcToWithdraw;

}

H2 MasterChefStrategy assumes 1:1 price ratio of stablecoins RESOLVED

MasterChefStrategy::usdcToUnderlyingAndInvest adds liquidity to a Uniswap
pair at a 1:1 ratio (probably assuming that both tokens are pegged to the USD).

function usdcToUnderlyingAndInvest(uint256 amount, bytes32 position) {

...

uint256 halfToken0 = amount / 2;

uint256 halfToken1 = amount - halfToken0;

// We swap the USDC for each token needed for the LP Pair.

uint256 token0Amount = LibUtils._routerSwap(router,

LibStorage.USDC_CONTRACT, token0, halfToken0);

uint256 token1Amount = LibUtils._routerSwap(router,

4

DEDAUB.COM

LibStorage.USDC_CONTRACT, token1, halfToken1);

(, , uint256 liquidity) =

IUniswapV2Router02(mcs.dexRouter).addLiquidity(

token0,

token1,

token0Amount,

token1Amount,

1, // We are willing to take whatever the pair gives us

1, // We are willing to take whatever the pair gives us

address(this),

block.timestamp

);

Recent history has shown that stablecoins can get depegged; in such a scenario this
action can lead to a loss of funds. It is recommended to add liquidity following the
current ratio of the pair (or revert the operation if the current ratio is not close to 1:1).

H3 LibVault::_withdraw function mixes fees and user funds, with
no proper accounting

RESOLVED

When a user calls the redeem() function of the VaultFacet, the call is resolved to the
_withdraw() function of the LibVault library.

This function will check whether the contract has enough USDC to honour the
redemption requests, and if not it will withdraw the shortfall of funds from the
strategies - plus 0.5% extra. The function will also keep up to 2% of the withdrawn
USDC as a fee, holding them in the contract.

However it seems that no accounting is being used to keep track of what is a fee and
what is a deposit. Moreover, fees are indistinguishable from deposits, hence the next
withdrawal request will end up using the fees to honour the request, before
withdrawing the remaining amount from the strategies.

This lack of accounting has several issues:

5

DEDAUB.COM

- Someone will need to keep track of fees o�-chain and only withdraw what is an
actual fee, which is an error prone process.

- Since fees are not kept separately from user funds, it is impossible for the owner
to withdraw the fees without closing the vault and removing the funds from a
strategy. Again this is an error prone process.

We recommend implementing proper accounting for the fees, and storing them
separately, so that the owner can easily withdraw them. If it is desired for the fees to
remain invested, a solution could be to store them in 1USD form, and transfer them to
some fee-holder account, who can later redeem them similarly to all users.

MEDIUM SEVERITY:

No medium severity issues were found.

LOW SEVERITY:

ID Description STATUS

L1 Incorrect comparison operator in LibRequirements
enforceValidAmountToDeposit function

RESOLVED

In LibRequirements, the function enforceValidAmountToDeposit() reverts when
amountUSDC < 10_000_000, but the comment above indicates that it should revert if
amountUSDC <= 10_000_000. The presence of an error here seems to be reinforced by
the implementation of the enforceIsMoreThan10USDC() function, which performs a
similar check.

/// @dev Valid amount to deposit must be greater than 10 USDC and smaller

6

DEDAUB.COM

than the allowed by the state variable maxDepositUSDC.

function enforceValidAmountToDeposit(uint256 amountUSDC) internal view {

if (amountUSDC > vs().maxDepositUSDC || amountUSDC < 10_000_000) {

revert Vault_Invalid_Deposit();

}

}

L2 Use of an arbitrary storage slot for strategyStorage DISMISSED

LibStorage::strategyStorage uses an arbitrary storage slot passed as parameter:

function strategyStorage(bytes32 position) internal pure returns

(Strategy storage ios) {

assembly {

ios.slot := position

}

}

The choice of the actual position is done o�-chain when the strategy is created
(LibManagement::_createMCStrategy), and many protocol functions take an arbitrary
position as a parameter. Although the intention is to always use
calculatePositionForStrategy for computing the position of strategies, this design
is unnecessarily risky for two reasons:

1. It remains possible that the position chosen o�-chain is wrong and in conflict
with other storage data.

2. More importantly, functions that read from an arbitrary position passed as a
parameter are very easy to exploit, if that parameter becomes controllable by
an adversary. Consider, for instance, the following function:

// contracts/MasterChefStrategy.sol

function withdrawRewardsToRecipient(address recipient, bytes32 position)

external {

7

DEDAUB.COM

Strategy storage mcs = ios(position);

// Save some SLOADs

address rewardToken = mcs.rewardTokenAddress;

IMasterChef(mcs.masterChefContract).withdraw(mcs.poolId, 0);

uint256 rewardBalance = LibUtils._balanceOfERC20(rewardToken,

address(this));

LibUtils._transferERC20(rewardToken, recipient, rewardBalance);

}

ios(position) can be anywhere in the contract’s storage! This function is
delegatecalled, so the adversary cannot call it with arbitrary parameters, but if he
could, it would be very easy to exploit it (as well as many other functions with
position as argument).

We recommend strategyStorage to hash its argument together with some string, to
ensure that (a) no conflicts exist and (b) by controlling the position one cannot read
arbitrary storage slots.

CENTRALIZATION ISSUES:
It is often desirable for DeFi protocols to assume no trust in a central authority, including
the protocol’s owner. Even if the owner is reputable, users are more likely to engage with
a protocol that guarantees no catastrophic failure even in the case the owner gets
hacked/compromised. We list issues of this kind below. (These issues should be
considered in the context of usage/deployment, as they are not uncommon. Several
high-pro�le, high-value protocols have signi�cant centralization threats.)

8

DEDAUB.COM

ID Description STATUS

N1 Rewards can only be withdrawn by Diamond contract owner DISMISSED

While depositors are able to withdraw funds they have deposited by using the
redeem() function of the VaultFacet, the rewards generated from the investment of
those deposits can only be retrieved by the owner of the Diamond contract.

This is achieved by the owner using the claimRewards() function of the VaultFacet, or
through the _deactivateStrategy() of the ManagementFacet. In both cases, the owner
speci�es a single arbitrary address which receives this reward; the reward is not
transferred to the depositors by the contract.

This issue was raised with the OneRing team, who stated that the OneRing team will
sell the rewards, get USDC that will be used to mint more 1USD, and then distribute the
1USD to the users using an ERC4626 vault.

The team also indicated that as a mitigation to centralisation issues the owner of the
Diamond contract would be a multisig contract.

The part of the system involving the distribution of rewards was out of the scope of this
audit; therefore this procedure could not be veri�ed during the audit.

N2 Deactivating strategies can leave the contract
undercollateralized

DISMISSED

Strategies can be deactivated by the owner, which causes all the underlying funds to
be withdrawn by the owner. This could leave the contract in an undercollateralized

9

DEDAUB.COM

state, preventing the users from redeeming their 1USD. There are currently no checks in
the contract to guarantee su�icient collateralization, this burden is left to the owner.

In response to this issue the OneRing team has indicated that OneRing is constantly
adding strategies and reviewing yield sources and needs to be able to modify LP pairs
quickly to stay competitive.

OTHER / ADVISORY ISSUES:
This section details issues that are not thought to directly a�ect the functionality of the
project, but we recommend considering them.

ID Description STATUS

A1 Some functions in LibRequirements emit non-informative
events

DISMISSED

In LibRequirements, the functions enforceValidMinting() and
enforceValidWithdraw() emit the Vault_Too_Much_Slippage event, when the
corresponding revert commands are not strictly related to slippage.

A2 Typo in error name in LibRequirements RESOLVED

LibRequirements de�nes an error called StategyManager_Invalid_Pool_Info. There is a
spelling mistake in the error name. The error is used in lines 23 and 152 of the library.

A3 Compiler bugs INFO

10

DEDAUB.COM

The code is compiled with Solidity 0.8.9 or higher. For deployment, we recommend no
floating pragmas, i.e., a speci�c version, so as to be con�dent about the baseline
guarantees o�ered by the compiler. Version 0.8.9, in particular, has some known bugs,
which we do not believe to a�ect the correctness of the contracts.

11

https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json#L1790

DEDAUB.COM

DISCLAIMER
The audited contracts have been analyzed using automated techniques and extensive
human inspection in accordance with state-of-the-art practices as of the date of this
report. The audit makes no statements or warranties on the security of the code. On its
own, it cannot be considered a su�icient assessment of the correctness of the contract.
While we have conducted an analysis to the best of our ability, it is our recommendation
for high-value contracts to commission several independent audits, as well as a public
bug bounty program.

ABOUT DEDAUB
Dedaub o�ers technology and auditing services for smart contract security. The
founders, Neville Grech and Yannis Smaragdakis, are top researchers in program
analysis. Dedaub’s smart contract technology is demonstrated in the
contract-library.com service, which decompiles and performs security analyses on the
full Ethereum blockchain.

12

