DeDAUBP DEDAUB.. COM

OneRing Audit

Smart Contract Security Assessment

July 21, 2022

DebAuUuP

ABSTRACT

Dedaub was commissioned to perform a security audit of the OneRing protocol.

This covered OneRing’s contracts at commit hash:
59a7a11f9048d3c78410a3e0d30£a782a017df03 of the master branch.

The audited contract list is the following:

contracts/MasterChefStrategy.sol
contracts/facets/ManagementFacet.sol
contracts/facets/PublicInfoFacet.sol
contracts/facets/VaultFacet.sol
contracts/facets/OwnershipFacet.sol
contracts/libraries/LibManagement.sol
contracts/libraries/LibVault.sol
contracts/libraries/LibUtils.sol
contracts/libraries/LibStorage.sol
contracts/libraries/LibRequirements.sol
contracts/libraries/LibMasterChefUtils.sol

Two auditors worked on the codebase for a week.

DEDAUB.COM

As a result of the audit, the OneRingTeam fixed a number of issues. These fixes were also

reviewed by the auditors. These are located at commit hash:
a68171dac9b300£4f91f91e3ebl0f5a5abb69be8a

Setting and Caveats

The audit’s main target is security threats, i.e., what the community understanding

would likely call “hacking®, rather than regular use of the protocol. Functional

https://github.com/0xRobocop/DiamondV2

DeDAUBP DEDAUB.. COM

correctness (i.e., issues in “regular use®) is a secondary consideration. Typically it can
only be covered if we are provided with unambiguous (i.e., full-detail) specifications of
what is the expected, correct behavior. In terms of functional correctness, we often
trusted the code’s calculations and interactions, in the absence of any other
specification. Functional correctness relative to low-level calculations (including units,
scaling, quantities returned from external protocols) is generally most effectively done
through thorough testing rather than human auditing. The scope of the audit includes
smart contract code. Interactions with off-chain (front-end or back-end) code are not
examined other than to consider entry points for the contracts, i.e., calls into a smart
contract that may disrupt the contract’s functioning.

We should emphasize that, independently of any audit, thoroughly testing all contracts
is essential for discovering functional bugs that often also lead to security vulnerabilities.
We believe that a large number of the issues listed below could have been discovered by
a comprehensive test suite.

VULNERABILITIES & FUNCTIONAL ISSUES

This section details issues that affect the functionality of the contract. Dedaub generally
categorizes issues according to the following severities, but may also take other
considerations into account such as impact or difficulty in exploitation:

Category | Description

CRITICAL Can be profitably exploited by any knowledgeable third party attacker
to drain a portion of the system’s or users’ funds OR the contract does
not function as intended and severe loss of funds may result.

Third party attackers or faulty functionality may block the system or
cause the system or users to lose funds. Important system invariants
can be violated.

DeDAUBP DEDAUB.. COM

Examples:
-User or system funds can be lost when third party systems misbehave.
-DoS, under specific conditions.

-Part of the functionality becomes unusable due to programming error.

LOW Examples:

-Breaking important system invariants, but without apparent
consequences.

-Buggy functionality for trusted users where a workaround exists.

-Security issues which may manifest when the system evolves.

Issue resolution includes “dismissed”, by the client, or “resolved”, per the auditors.

CRITICAL SEVERITY:

No critical severity issues were found.

HIGH SEVERITY:

ID Description STATUS

H1 | In LibVault, the _withdraw function can return without
transferring the funds to the caller.

RESOLVED

In LibVault, the _withdraw() function can terminate prematurely under certain
conditions without performing the transfer of funds to the caller.

This occurs because the contract returns when it contains enough USDC to satisfy the
withdrawal request. This is possible if the contract has accumulated fees in USDC

DeDAUBP DEDAUB.. COM

during previous withdrawal requests, or if the contract has accumulated additional
USDC as a result of it fetching an extra 0.5% from the strategies during previous
withdrawal requests.

function _withdraw(address owner, uint256 oneUSDAmount) internal
returns(uint256) {

// Ideally the contract will give USDC 1:1 with the 1USD burned
uint256 usdcToWithdraw =
LibUtils._ convertFromDecimalsToDecimals(oneUSDAmount,
LibStorage.ONE_USD DECIMALS, LibStorage.USDC_DECIMALS);

uint256 contractBalance =
LibUtils. balanceOfERC20(LibStorage.USDC_CONTRACT, address(this));

if(contractBalance >= usdcToWithdraw) {
return usdcToWithdraw;

H2 | MasterChefStrategy assumes 1:1 price ratio of stablecoins RESOLVED

MasterChefStrategy: :usdcToUnderlyingAndInvest adds liquidity to a Uniswap
pair at a 1:1 ratio (probably assuming that both tokens are pegged to the USD).

function usdcToUnderlyingAndInvest(uint256 amount, bytes32 position) {

uint256 halfToken©
uint256 halfTokenl

amount / 2;
amount - halfTokeno;

// We swap the USDC for each token needed for the LP Pair.

uint256 token®Amount = LibUtils. routerSwap(router,
LibStorage.USDC_CONTRACT, token@, halfToken®);

uint256 tokenlAmount = LibUtils. routerSwap(router,

DeDAUBP DEDAUB.. COM

LibStorage.USDC_CONTRACT, tokenl, halfTokenl);

(, , uint256 liquidity) =
IUniswapV2Router@2(mcs.dexRouter).addLiquidity(
tokeno,
tokenl,
token@Amount,
tokenlAmount,
1, // We are willing to take whatever the pair gives us
1, // We are willing to take whatever the pair gives us
address(this),
block.timestamp

);

Recent history has shown that stablecoins can get depegged; in such a scenario this
action can lead to a loss of funds. It is recommended to add liquidity following the
current ratio of the pair (or revert the operation if the current ratio is not close to 1:1).

H3 | LibVault:: _withdraw function mixes fees and user funds, with
no proper accounting

RESOLVED

When a user calls the redeem() function of the VaultFacet, the call is resolved to the
—withdraw() function of the LibVault library.

This function will check whether the contract has enough USDC to honour the
redemption requests, and if not it will withdraw the shortfall of funds from the
strategies - plus 0.5% extra. The function will also keep up to 2% of the withdrawn
USDC as a fee, holding them in the contract.

However it seems that no accounting is being used to keep track of what is a fee and
what is a deposit. Moreover, fees are indistinguishable from deposits, hence the next
withdrawal request will end up using the fees to honour the request, before
withdrawing the remaining amount from the strategies.

This lack of accounting has several issues:

DeDAUBP DEDAUB.. COM

- Someone will need to keep track of fees off-chain and only withdraw what is an
actual fee, which is an error prone process.

- Since fees are not kept separately from user funds, it is impossible for the owner
to withdraw the fees without closing the vault and removing the funds from a
strateqgy. Again this is an error prone process.

We recommend implementing proper accounting for the fees, and storing them
separately, so that the owner can easily withdraw them. If it is desired for the fees to
remain invested, a solution could be to store them in 1USD form, and transfer them to
some fee-holder account, who can later redeem them similarly to all users.

MEDIUM SEVERITY:

No medium severity issues were found.

LOW SEVERITY:

ID Description STATUS

L1 | Incorrect comparison operator in LibRequirements
enforceValidAmountToDeposit function

RESOLVED

In LibRequirements, the function enforceValidAmountToDeposit () reverts when
amountUSDC < 10_000_000, but the comment above indicates that it should revert if
amountUSDC <= 10_000_000. The presence of an error here seems to be reinforced by
the implementation of the enforceIsMoreThan10OUSDC () function, which performs a

similar check.

/// @dev Valid amount to deposit must be greater than 10 USDC and smaller

DeDAUBP DEDAUB.. COM

than the allowed by the state variable maxDepositUSDC.

function enforceValidAmountToDeposit(uint256 amountUSDC) internal view {
if (amountUSDC > vs().maxDepositUSDC || amountUSDC < 10 000 000) {
revert Vault_Invalid_Deposit();
}
}

L2 | Use of an arbitrary storage slot for strategyStorage DISMISSED

LibStorage: :strategyStorage uses an arbitrary storage slot passed as parameter:

function strategyStorage(bytes32 position) internal pure returns
(Strategy storage ios) {
assembly {
ios.slot := position

The choice of the actual position is done off-chain when the strateqgy is created
(LibManagement:: _createMCStrategy), and many protocol functions take an arbitrary
position as a parameter. Although the intention is to always use
calculatePositionForStrategy for computing the position of strategies, this design
is unnecessarily risky for two reasons:
1. It remains possible that the position chosen off-chain is wrong and in conflict
with other storage data.
2. More importantly, functions that read from an arbitrary position passed as a
parameter are very easy to exploit, if that parameter becomes controllable by
an adversary. Consider, for instance, the following function:

// contracts/MasterChefStrategy.sol
function withdrawRewardsToRecipient(address recipient, bytes32 position)
external {

DeDAUBP DEDAUB.. COM

Strategy storage mcs = ios(position);
// Save some SLOADs
address rewardToken = mcs.rewardTokenAddress;

IMasterChef(mcs.masterChefContract).withdraw(mcs.poolld, 0);

uint256 rewardBalance = LibUtils. balanceOfERC20(rewardToken,
address(this));

LibUtils. transferERC20(rewardToken, recipient, rewardBalance);

}

ios(position) can be anywhere in the contract’s storage! This function is
delegatecalled, so the adversary cannot call it with arbitrary parameters, but if he
could, it would be very easy to exploit it (as well as many other functions with
position as argument).

We recommend strategyStorage to hash its argument together with some string, to
ensure that (a) no conflicts exist and (b) by controlling the position one cannot read
arbitrary storage slots.

CENTRALIZATION ISSUES:

It is often desirable for DeFi protocols to assume no trust in a central authority, including
the protocol’s owner. Even if the owner is reputable, users are more likely to engage with
a protocol that guarantees no catastrophic failure even in the case the owner gets
hacked/compromised. We list issues of this kind below. (These issues should be
considered in the context of usage/deployment, as they are not uncommon. Several
high-profile, high-value protocols have significant centralization threats.)

DeDAUBP DEDAUB.. COM

ID Description STATUS

N1 [Rewards can only be withdrawn by Diomond contract owner DISMISSED

While depositors are able to withdraw funds they have deposited by using the
redeem() function of the VaultFacet, the rewards generated from the investment of
those deposits can only be retrieved by the owner of the Diamond contract.

This is achieved by the owner using the claimRewards() function of the VaultFacet, or
through the _deactivateStrategy() of the ManagementFacet. In both cases, the owner
specifies a single arbitrary address which receives this reward; the reward is not
transferred to the depositors by the contract.

This issue was raised with the OneRing team, who stated that the OneRing team will
sell the rewards, get USDC that will be used to mint more 1USD, and then distribute the
1USD to the users using an ERC4626 vault.

The team also indicated that as a mitigation to centralisation issues the owner of the
Diamond contract would be a multisig contract.

The part of the system involving the distribution of rewards was out of the scope of this
audit; therefore this procedure could not be verified during the audit.

N2 | Deactivating strategies can leave the contract
undercollateralized

DISMISSED

Strategies can be deactivated by the owner, which causes all the underlying funds to
be withdrawn by the owner. This could leave the contract in an undercollateralized

DeDAUBP DEDAUB.. COM

state, preventing the users from redeeming their 1USD. There are currently no checks in
the contract to guarantee sufficient collateralization, this burden is left to the owner.

In response to this issue the OneRing team has indicated that OneRing is constantly
adding strategies and reviewing yield sources and needs to be able to modify LP pairs

quickly to stay competitive.

OTHER / ADVISORY ISSUES:

This section details issues that are not thought to directly affect the functionality of the

project, but we recommend considering them.

ID Description STATUS
Al | Some functions in LibRequirements emit non-informative DISMISSED
events

In LibRequirements, the functions enforcevValidMinting() and
enforceValidWithdraw() emitthe Vault_Too_Much_Slippage event, when the

corresponding revert commands are not strictly related to slippage.

A2 | Typo in error name in LibRequirements RESOLVED

LibRequirements defines an error called StategyManager_Invalid_Pool_Info. There is a
spelling mistake in the error name. The error is used in lines 23 and 152 of the library.

INFO

A3 | Compiler bugs

10

DeDAUBP DEDAUB.. COM

The code is compiled with Solidity 0.8.9 or higher. For deployment, we recommend no
floating pragmas, i.e., a specific version, so as to be confident about the baseline
guarantees offered by the compiler. Version 0.8.9, in particular, has some known bugs,
which we do not believe to affect the correctness of the contracts.

11

https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json#L1790

DeDAUBP DEDAUB.. COM

DISCLAIMER

The audited contracts have been analyzed using automated techniques and extensive
human inspection in accordance with state-of-the-art practices as of the date of this
report. The audit makes no statements or warranties on the security of the code. On its
own, it cannot be considered a sufficient assessment of the correctness of the contract.
While we have conducted an analysis to the best of our ability, it is our recommendation
for high-value contracts to commission several independent audits, as well as a public

bug bounty program.

ABOUT DEDAUB

Dedaub offers technology and auditing services for smart contract security. The
founders, Neville Grech and Yannis Smaragdakis, are top researchers in program
analysis. Dedaub’s smart contract technology is demonstrated in the
contract-library.com service, which decompiles and performs security analyses on the

full Ethereum blockchain.

12

